

ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

7M05 - Естественные науки, математика и статистика (Код и классификация области образования)

7М053 - Физические и химические науки (Код и классификация направления подготовки)

0530

(Код в международной стандартной классификации образования)

М090 - Физика

(Код и классификация группы образовательной программы)

7М05302 - Техническая физика

(Код и наименование образовательной программы)

Магистр

(уровень подготовки)

Семей

ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

7М05 - Естественные науки, математика и статистика

(Код и классификация области образования)

7М053 - Физические и химические науки

(Код и классификация направления подготовки)

0530

(Код в международной стандартной классификации образования)

М090 - Физика

(Код и классификация группы образовательной программы)

7М05302 - Техническая физика

(Код и наименование образовательной программы)

Магистр

(уровень подготовки)

ПРЕДИСЛОВИЕ

Разработано

Академическим комитетом образовательная программа 7M05302 - Техническая физика по направлению подготовки 7M053 - Физические и химические науки на основании ГОСВиПО утвержденного Приказом МНиВО Республики Казахстан от 20 июля 2022 года № 2 (в редакции приказа от 20.02.2023 № 66)

Состав АК	Ф.И.О.полностью	Ученая степень, ученое звание, должность	Подпись
Руководитель АК	Нүрымхан Гульнур Несиптаевна	Декан инженерно-технологического факультета, PhD	
Менеджер ОП	Ермоленко Михаил Вячеславович	старший преподаватель кафедры технической физики и теплоэнергетики, к.т.н.	
Член АК	Степанова Ольга Александровна	заведующая кафедрой технической физики и теплоэнергетики, к.т.н.	
Член АК	Касымов Аскар Багдатович	и.о. ассоциированного профессора (доцент) кафедры технической физики и теплоэнергетики, PhD	
Член АК	Витюк Владимир Анатольевич	PhD, заместитель генерального директора по науке (РГП Национальный ядерный центр Республики Казахстан)	
Член АК	Мухамедов Нуржан Еролович	начальник лаборатории филиала «Институт атомной энергии» Национального ядерного центра Республики Казахстан	
Член АК	ЖасұланАйнұр Жасұланқызы	магистрант группы МТФ-101	
Член АК	Еділұлы Әлихан	магистрант группы МТФ-201	

Рецензирование

Ф.И.О. рецензента	Должность, место работы	Подпись
Чектыбаев Бауржан Жамбулович	Начальник отдела термоядерных исследований филиала ИАЭ РГП НЯЦ РК	

Рассмотрено

на заседании Комиссии по обеспечению качества инженерно-технологического факультета Рекомендовано к утверждению на Ученом совете университета Протокол № 4.6 «10» апреля 2023 г.

Председатель Комиссии по обеспечению качества Абдилова Г.Б.

Утверждено на заседании Ученого совета университета протокол № 8 «25» апреля 2023 г.

Утверждено

на заседании Ученого совета университета Протокол № 1 «01» сентября 2023 г.

Председатель Ученого совета университета Орынбеков Д.Р.

Содержание

- 1. ВВЕДЕНИЕ
- 2. ПАСПОРТ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ:
- 2.1. Цель образовательной программы;
- 2.2. Карта профиля подготовки в рамках образовательной программы:

Код и классификация области образования;

Код и классификация направления подготовки;

Код в международной стандартной классификации образования;

Код и классификация группы образовательной программы;

Код и наименование образовательной программы;

2.3.Квалификационная характеристика выпускника:

Присуждаемая степень / квалификация;

Наименование профессии / перечень должностей специалиста;

Уровень квалификации по ОРК (отраслевая рамка квалификации);

Область профессиональной деятельности;

Объект профессиональной деятельности;

Виды профессиональной деятельности.

- 3. Модули и содержание образовательной программы
- 4. Сводная таблица по объему образовательной программы 7M05302 Техническая физика»
- 5.Перечень учебных дисциплин вузовского компонента
- 6.Каталог элективных дисциплин
- 7.Рабочий учебный план

1.ВВЕДЕНИЕ

1.1.Общие данные

программе 7M05302-Подготовка ПО образовательной Техническая физика осуществляется в университете имени Шакарима города Семей на кафедре «Техническая физика и теплоэнергетика» инженерно- технологического факультета. При реализации образовательной программы учтены особенности подготовки магистров, характерные для университета имени Шакарима города Семей и региона – это образовательные траектории обучения «Ядерные реакторы и энергетические установки», «Техника и физика низких температур» и «Медицинская физика». Уникальность данной образовательной программы заключается в том, что подготовка специалистов в данной области проводится в тесном сотрудничестве с Национальным ядерным центром Республики Казахстан и Центром ядерной медицины и онкологии города Семей. Данные направления специализации на территории Республики Казахстан осуществляется только в университете имени Шакарима города Семей. Оценка качества подготовки будущих специалистов в рамках защиты диссертаций проводится на выездных заседаниях аттестационной комиссии на базе филиала кафедры в НЯЦ РК (г. Курчатов) и Центре ядерной медицины и онкологии города Семей.

1.2.Критерии завершенности

Основным критерием завершенности образовательного процесса по подготовке магистров научно-педагогического направления является освоение обучающимся не менее 88 кредитов теоретического обучения, в том числе 6 кредитов педагогической практики, 13 кредитов исследовательской практики, а также не менее 24 кредитов научно-исследовательской работы магистранта, включая прохождение стажировки и выполнение магистерской диссертации, не менее 8 кредитов итоговой аттестации. Всего 120 кредитов.

1.3.Типичный срок обучения: 2 года.

2.ПАСПОРТ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

2.1.Цель образовательной программы	Подготовка конкурентоспособных специалистов, обладающих глубокими фундаментальными знаниями в области технической физики, умеющих работать в современных условиях быстро меняющихся технологий и резко возрастающего объема информации.
2.2.Карта профиля подготовки в рамках обр	азовательной программы
Код и классификация области образования	7M05 - Естественные науки, математика и статистика
Код и классификация направления подготовки	7М053 - Физические и химические науки
Код в международной стандартной классификации образования	0530
Код и классификация группы образовательной программы	М090 - Физика
Код и наименование образовательной программы	7М05302 - Техническая физика
2.3.Квалификационная характеристика вып	ускника
Присуждаемая степень / квалификация	Магистр естественных наук
Наименование профессии / перечень должностей специалиста	Инженер-конструктор, инженер-физик, младший научный сотрудник, старший лаборант, преподаватель колледжа, ВУЗа.
Уровень квалификации по ОРК (отраслевая рамка квалификации)	7
Область профессиональной деятельности	Промышленность, энергетическая отрасль, образование, наука, медицина.
Объект профессиональной деятельности	Предприятия и фирмы энергетического и технологического профилей. Научно-исследовательские учреждения. Высшие и средние специальные учебные заведения. Центры лучевой диагностики и терапии.
Виды профессиональной деятельности	Экспериментально-исследовательская. Организационно-управленческая. Образовательная (педагогическая).
Модель выпускника	Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности. Формировать стратегию и структуру организации научных исследований и физикоматематического моделирования ядерных установок. Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике. Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований. Разрабатывать меры по безопасной эксплуатации

и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии. Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности. Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

3. Модули и содержание образовательной программы

Модуль 1. Социолингвистическая и научно-педагогическая деятельность

Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Иностранный язык (профессиональный)

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Вузовский компонент
SubjectID	26196 (3010725)
Курс	1
Семестр	1
Количество академических кредитов	3
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	20часов
Самостоятельная работа обучающегося	40часов
Итого	90часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

Овладение общекультурными, профессиональными и специальными компетенциями для осуществления профессиональной деятельности, предполагающее обучение навыкам чтения оригинальной литературы в определенной отрасли знаний на иностранном языке, развитие навыков устной речи в монологической и диалогической форме по специальности, развитие навыков письменной научной речи в рамках области научного исследования магистранта, а также ознакомление с формами и видами международного сотрудничества в научной сфере.

Цель изучения дисциплины

Целью изучения дисциплины «Иностранный язык (профессиональный)» в магистратуре является системное углубление коммуникативной компетенции в рамках международных стандартов иноязычного образования на основе дальнейшего развития навыков и умений активного владения языком в профессиональной деятельности будущего магистра.

Результаты обучения

ON1 Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

История и философия науки

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Вузовский компонент
SubjectID	28322 (3010724)
Курс	1
Семестр	1
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

Дисциплина направлена на изучение культуры научного мышления, формирует аналитические возможности и навыки исследовательской деятельности, предоставляет теоретические и практические знания, необходимые будущему ученому. Исследует историческую эволюцию наук и философские перспективы, которые они формируют. Описываются истоки современной науки, ее общественные и институциональные связи. Рассматриваются общефилософские вопросы, связанные с мысленными экспериментами, подтверждением и опровержением теорий, происхождением и применением количественных и высококачественных методов исследований.

Цель изучения дисциплины

формирование у магистрантов междисциплинарного мировоззрения, основанного на глубоком осмыслении истории и философии (теории) научного мышления, как части общечеловеческой культуры.

Результаты обучения

ON1 Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Педагогика высшей школы

Цикл дисциплины Базовые дисциплины Компонент дисциплины Вузовский компонент SubjectID 28323 (3010726) Курс Семестр 1 Количество академических кредитов 3 Лекции 15часов Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 20часов преподавателя 40часов Самостоятельная работа обучающегося 90часов Итого Экзамен Форма контроля знаний

Краткое описание содержания дисциплины

Курс направлен на изучение основных направлений, принципов и закономерностей высшего образования. В ходе изучения курса будут рассмотрены базовые понятия современной педагогики, концепции и теории обучения и воспитания, дидактика высшей школы. Магистрант овладеет навыками проектирования организации образовательного процесса, приемами индивидуальной и групповой рефлексии, смогут грамотно формулировать педагогические цели, применять образовательные технологии в учебном процессе, конструировать рабочие программы дисциплин.

Цель изучения дисциплины

Целью освоения дисциплины является овладение системой знаний о высшем образовании, его содержании, структуре, принципах управления образовательными процессами и овладение современными технологиями в сфере управления и организации образовательного процесса

Результаты обучения

ON1 Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Педагогическая практика

Психология управления

Цикл дисциплины Базовые дисциплины Компонент дисциплины Вузовский компонент 28321 (3010723) SubjectID 1 Курс Семестр 1 Количество академических кредитов 3 Лекции 15часов Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 20часов преподавателя 40часов Самостоятельная работа обучающегося 90часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Содержание курса направлено на освоение подходов и направлений психологии управления, психологических законов управления, особенностей планирования и решения управленческих задач. Обучающиеся ознакомятся с психологическими методами урегулирования конфликтных ситуаций, овладеют способами мотивирования труда, приемами использования эффективных стилей управления. Будут сформированы навыки анализа психологических причин, лежащих в основе снижения эффективности процесса управления.

Цель изучения дисциплины

Целью дисциплины «Психология управления» является формирование научно- обоснованных представлений о системе психических явлений, психологических переменных поведения и сознательной деятельности человека в современных условиях и позволяет сформировать у магистрантов навыки применения полученных психологических знаний в образовательной деятельности

Результаты обучения

ON1 Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Педагогическая практика

 Цикл дисциплины
 Базовые дисциплины

 Компонент дисциплины
 Вузовский компонент

 SubjectID
 28378 (3010687)

 Курс
 2

 Семестр
 1

 Количество академических кредитов
 6

Педагогическая практика 180часов Итого 180часов

Форма контроля знаний Итоговая оценка по практике

Краткое описание содержания дисциплины

Педагогическая практика магистранта является важной практической компонентой второй ступени высшего образования. Этот вид практики направлен на овладение основами педагогического мастерства, руководства группой студентов и разработки учебно-методического материала. Прохождение педагогической практики предполагает формирование понятий о современных образовательных технологиях, формах и методах проведения занятий, контроля усвоения изученного материала. Педагогическая практика способствует развитию у магистрантов навыков самоанализа по результатам проделанной работы.

Цель изучения дисциплины

Целью педагогической практики является изучение основ учебно- методической работы и формирование практических навыков и методики преподавания в высшем учебном заведении.

Результаты обучения

ON1 Применять основополагающие научные, педагогические, управленческие, коммуникативные знания и умения в профессиональной деятельности.

Пререквизиты

Педагогика высшей школы

Постреквизиты

Итоговая аттестация

Модуль 2. Организация научных исследований в технической физике

Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок. Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике. Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований. Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании. Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии. Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Методология научных исследований

Цикл дисциплины Базовые дисциплины Компонент дисциплины Компонент по выбору SubjectID 28278 (3010689) 1 Курс 1 Семестр Количество академических кредитов Лекции 15часов Практические и семинарские занятия 30часов 35часов Самостоятельная работа обучающегося под руководством преподавателя 70часов Самостоятельная работа обучающегося Итого 150часов Экзамен Форма контроля знаний

Краткое описание содержания дисциплины

В курсе подробно рассказано о методологическом обеспечении научно- исследовательской деятельности. Показана роль функциональной структуры научно- исследовательской деятельности. Проанализировано эмпирическое и теоретическое мышление в научном познании. Сформулированы и обоснованы подтверждения и опровержения теоретических схем. Обобщены функциональные особенности экспериментального моделирования. Дано объяснение роста научного знания. Показана важность функционально-процессуальных характеристик гипотез и их научной новизны.

Цель изучения дисциплины

Сформировать у обучающихся принципы и методы организации научных исследований.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Методы измерения ионизирующих излучений и свойств ядерных материалов

Цикл дисциплины Базовые дисциплины Компонент дисциплины Компонент по выбору 28343 (3010719) SubjectID Kypc 1 Семестр 5 Количество академических кредитов Лекции 15часов Практические и семинарские занятия 30часов Самостоятельная работа обучающегося под руководством 35часов преподавателя 70часов Самостоятельная работа обучающегося Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс изучает категории ядерных материалов (ЯМ) и требования, предъявляемые к точности и кратности проведения измерений. Рассматриваются баланс ЯМ и уравнение баланса. Приведены учетные и подтверждающие измерения ЯМ, неразрушающие методы анализа ЯМ и калибровка измерительной системы. Обсуждается определение в образцах содержания ЯМ посредством измерения их собственных гамма-излучений и гамма-спектрометрических измерений. Даются основы теории переноса излучений и многократного рассеяния.

Цель изучения дисциплины

Ознакомление с методами измерения ядерных материалов и полей ионизирующих излучений, получение навыков в проведении этих измерений и обработки полученных результатов.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Методы обработки сигналов и изображений в медицине

Цикл дисциплины Базовые дисциплины Компонент дисциплины Компонент по выбору 28342 (3010721) SubjectID 1 Курс 1 Семестр Количество академических кредитов 5 Лекции 15часов Практические и семинарские занятия 15часов Лабораторные работы 15часов Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен цифровым изображениям, применяемых в медицине. В нем рассматривается качество изображений и базовые операции с изображениями. Приводится классификация и отличительная особенность медицинских изображений. Дается анализ медицинских изображений и верификация алгоритмов анализа. Рассматриваются особенности визуализации для диагностики и терапии. Приводится математическое моделирование как метод анализа биологических процессов. Рассматривается аппроксимация типичных биологических сигналов и анализ биологических шумов.

Цель изучения дисциплины

Формирование теоретических представлений и практических навыков моделирования биологических объектов и анализа биологических сигналов и биологических шумов.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ОМ10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской

деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Организация и планирование научных исследований

Цикл дисциплиныБазовые дисциплиныКомпонент дисциплиныКомпонент по выборуSubjectID28339 (3010717)Курс1Семестр1Количество академических кредитов5

 Лекции
 15часов

 Практические и семинарские занятия
 30часов

 Самостоятельная работа обучающегося под руководством
 35часов

преподавателя

 Самостоятельная работа обучающегося
 70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

Курс посвящен вопросам организации и планирования научных исследований. Изложены методологические основы научного познания и творчества. Освещены выбор направления научного исследования и разработка этапов научно-исследовательской работы. Рассмотрены требования к поиску, накоплению и обработке научной информации. Описаны принципы теоретических и экспериментальных исследований. Разобрано моделирования в научном и техническом творчестве. Обобщены методы обработки результатов экспериментальных исследований. Сформулированы требования по оформлению результатов научной работы.

Цель изучения дисциплины

Освоение элементов методики научных исследований, для развития рационального творческого мышления и организации оптимальной мыслительной деятельности.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основные принципы конструирования приборов и оборудования

Цикл дисциплины Базовые дисциплины Компонент дисциплины Компонент по выбору 28276 (3010688) SubjectID Курс 1 1 Семестр Количество академических кредитов Лекции 15часов 30часов Практические и семинарские занятия Самостоятельная работа обучающегося под руководством 35часов преподавателя 70часов Самостоятельная работа обучающегося Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются теоретические основы конструирования и проектирования с разработкой технического задания. Приводится структура и конструктивные особенности различных приборов, а также принципы разработки технического задания. Уделяется внимание формулировке цели и задач. Рассматривается конструкторская документация и ее классификация. Приводятся основные группы технической документации и спецификации. Рассматривается технология конструирования, эксплуатационные свойства и надежность приборов и оборудования.

Цель изучения дисциплины

Сформировать у обучающихся компетентностный подход в области конструирования приборов и оборудования в области технической физике.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОN5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных

сетях и оборудовании.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основы САПР низкопотенциальной энергетики

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28337 (3010691)
Курс	1
Семестр	1
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются цели и задачи математического моделирования объектов низкопотенциальной энергетики. Приводятся часто используемые способы оптимизации моделируемых объектов, виды идеальных моделей и метод термоэкономики. Рассматривается основные методы моделирования и динамической оптимизации холодильных установок и систем кондиционирования воздуха с учетом сезонных изменений температуры наружного воздуха и величины нагрузок. Уделяется внимание системам автоматизированного проектирования.

Цель изучения дисциплины

Целью данного курса является развитие навыка научно-исследовательской и проектно-конструкторской работы в области холодильной техники с постановкой и проведением имитационных экспериментов с моделями процессов тепломассообмена, происходящих в теплообменных аппаратах холодильной установки на базе ЭВМ.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОN9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теория и техника научного эксперимента

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28338 (3010692)
Курс	1
Семестр	1
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	15часов
Лабораторные работы	15часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

В курсе подробно рассматриваются методы планирования эксперимента. Изучаются возможности применения в исследованиях однофакторного, дробного факторного и полного факторного экспериментов и рототабельных планов. Показаны задачи оптимизации в экстремальных экспериментах. Рассмотрены спецвопросы измерений, теория погрешностей, математическая статистика, теория вероятности и средства измерений. Обобщены методы и средства теплотехнических измерений, термический анализ, методы экспериментального изучения процессов тепло и массопереноса.

Цель изучения дисциплины

Формирование знаний, умений и навыков в области современных методов и средств проведения научных и промышленных экспериментов.

Результаты обучения

0N2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования

ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теория и техника теплотехнического эксперимента

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28340 (3010693)
Курс	1
Семестр	1
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	15часов
Лабораторные работы	15часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен
1/	

Краткое описание содержания дисциплины

В курсе рассмотрены элементы теории планирования эксперимента, регрессивный и статический анализы. Дан обзор технических измерений и приборов. Обобщены способы экспериментального изучения теплофизических свойств веществ и процессов тепло- и массообмена, методы и средства контроля технических материалов и металлов теплоэнергетических теплотехнологических установок. Представлены методы контроля качества сырья, топлива и продукции теплотехнологических производств и метрологическое обеспечение производства и экспериментальных исследований.

Цель изучения дисциплины

Освоение основ метрологии и измерительной техники, формирование знаний, умений и навыков в области современных методов и средств проведения научных и промышленных экспериментов в области теплоэнергетики и теплотехники.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физико-математическое моделирование ядерных энергетических установок

Цикл дисциплины	Базовые дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28279 (3010690)
Курс	1
Семестр	1
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен
1/	

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные направления применения электронно- вычислительных машин в физических исследованиях. Подробно рассматривается особенности постановки расчетного эксперимента.

Приводятся численное интегрирование функций одной переменной и кратные интегралы. Рассматриваются конечноразностные методы решения дифуравнений, применительно к ядерным реакторам. Приводится методика моделирования движения частицы в силовом поле. Дается характеристика нейтронно- физических задач и алгоритм моделирования физических процессов в ядерных реакторах.

Цель изучения дисциплины

Подготовка магистрантов к решению инженерных задач анализа и расчета ядерных энергетических установок на основе

строгих научных методов.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Модуль 3. Фундаментальные понятия современной физики

Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок. Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии. Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии. Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Избранные главы современной физики

изоранные главы соврешенной физики	
Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Вузовский компонент
SubjectID	28364 (3010716)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	30часов
Практические и семинарские занятия	15часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

Данная дисциплина посвящена обсуждению нетривиальных и интересных физических проблем современной физики. Рассматривается классическая механика материальной точки и принцип относительности в классической физике и релятивистской физике. Рассматривается термодинамика идеальных и термодинамика реальных газов, статистические методы, используемые в физике. Обсуждаются некоторые макроскопические квантовые эффекты и высокотемпературная сверхпроводимость. Приводятся основы атомной физики, квантовой механики и элементы мезоскопической физики.

Цель изучения дисциплины

Формирование у магистров представлений о современной физике в целом, как логически стройной системы знаний о законах Природы для создания новых технологий и управлении техническими средствами.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Магнитно-резонансные методы

Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28363 (3010700)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	30часов
Практические и семинарские занятия	15часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматривается история создания MPT и принципы магнитного резонанса. Приводятся виды магнитных резонансов и области их применения. Дается представление о спин- решеточной и спин- спиновой релаксации. Рассматривается понятие самодиффузии и способ ее измерения методом градиентного ЯМР. Рассматриваются способы получения изображения в магнитно-резонансном исследовании. Дается квантовомеханическое описание явления магнитного резонанса и природа анизотропии спектров.

Цель изучения дисциплины

Формирование у магистрантов знаний в области различных методов магнитного резонанса и типичными областями их применения.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

Пререквизиты

Бакалавриат

Итого

Постреквизиты

Итоговая аттестация

Механика сплошных сред

 Цикл дисциплины
 Профилирующие дисциплины

 Компонент дисциплины
 Компонент по выбору

SubjectID 28358 (3010697)

Курс 1
Семестр 2
Количество академических кредитов 5
Лекции 15часов
Практические и семинарские занятия 30часов
Самостоятельная работа обучающегося под руководством преподавателя
Самостоятельная работа обучающегося 70часов

Форма контроля знаний Краткое описание содержания дисциплины

В данной дисциплине рассматривается механика с ее основными законами и уравнениями и кинематика с необходимыми динамическими уравнениями движения сплошных сред. Рассматриваются уравнения движения идеальной жидкости, плоскопараллельное и волновое движение и уравнения двумерного слоевого движения идеальной жидкости на криволинейной поверхности. Дается представление о движении вязкой жидкости. Приводятся уравнения и некоторые задачи теории упругости.

150часов

Экзамен

Цель изучения дисциплины

Ознакомить магистрантов с основными физическими явлениями, изучаемыми механикой сплошных сред, и, до известной степени, с элементами используемого ею математического аппарата.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации I

 Цикл дисциплины
 Профилирующие дисциплины

 Компонент дисциплины
 Вузовский компонент

SubjectID 28346 (3010710)

 Курс
 1

 Семестр
 2

 Количество академических кредитов
 11

 Научно-исследовательская работа
 330часов

 Итого
 330часов

Форма контроля знаний Итоговая оценка по практике

Краткое описание содержания дисциплины

Научно- исследовательская работа развивает способности самостоятельного осуществления деятельности в сфере образования и науки, связанной с решением сложных профессиональных задач в инновационных условиях, обеспечение развития профессионального научно- исследовательского мышления магистрантов, формирование у них четкого представления об основных профессиональных задачах, способах их решения, проведение библиографической работы с привлечением современных информационных технологий.

Цель изучения дисциплины

Подготовка магистранта к самостоятельной научно- исследовательской работе, направленной на написание и защиту магистерской диссертации.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Пререквизиты

Бакалавриат Организация и планирование научных исследований

Постреквизиты

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации II

Основные принципы современной физики (на английском языке)

	`
Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28360 (3010699)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	30часов
Практические и семинарские занятия	15часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные свойства пространства-времени и их связь с законами сохранения. Приводится принцип относительности и его следствия. Дается понятие и определение фазового пространства состояний физической системы. Подробно освещается обратимая и необратимая динамика. Приводятся понятия хаоса и структуры. Дается эволюционное и структурное описание физической системы. Рассматривается роль принципов симметрии.

Цель изучения дисциплины

Формирование у студентов современного физического мышления о физической картине мира.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основы когенерации

Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28354 (3010694)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен
V	

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются когенерационные установки и перспективы их использования. Рассматриваются энергоблоки на базе газопоршневых двигателей (ГПУ), газотурбинные, парогазовые, твердотопливные и биогазовые когенерационные установки. Рассматриваются вопросы когенерации и малой энергетики на предприятиях пищевой промышленности и сельском хозяйстве. Дается представление о тригенерации и экологических проблемах при производстве тепловой и электрической энергии.

Цель изучения дисциплины

Формирование знаний основ проектирования, монтажа и эксплуатации когенерационных установок

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основы нанотехнологии

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору SubjectID 28359 (3010698) 1 Курс 2 Семестр Количество академических кредитов 5 30часов Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен тенденции развития нантехнологий. Рассматривается молекулярно-лучевая эпитаксия и химическое осаждение из газообразной фазы. Приводятся современные методы, использующие сканирующие зонды и сканирующая туннельная микроскопия. Изучается атомная силовая микроскопия и атомная инженерия. Обсуждаются зондовые методы формирования наноструктур и методы формирования нанообразных изображений. Подробно разбираются особенности саморегулирующихся процессов и формирования наноструктурированных материалов и покрытий.

Цель изучения дисциплины

Ознакомление с основными физическими явлениями, изучаемыми нанотехнологиями и с элементами используемого ими математического аппарата.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

Пререквизиты

Бакалавриат

Постреквизиты

. Итоговая аттестация

Основы ядерной физики в приложении к медицине

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору 28367 (3010720) SubjectID Курс 1 2 Семестр Количество академических кредитов Лекции 15часов 30часов Практические и семинарские занятия Самостоятельная работа обучающегося под руководством 35часов преподавателя 70часов Самостоятельная работа обучающегося Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен вопросам использования ядерной физики в диагностике органов человека и применению регистрирующей аппаратуры. Рассматривается история развития ядерной медицины, свойства атомных ядер и радиоактивные превращения ядер. Дается понятие радиоактивности, дозиметрии. Рассматривается применение радиоактивных излучений для диагностики и лучевой терапии. Приводится степень воздействия ионизирующего излучения. Разбирается магнитно-резонансная, компьютерная томография и производство радиофармпрепаратов.

Цель изучения дисциплины

Обеспечение необходимого уровня знаний основ ядерной физики, который необходим для использования явлений ядерной физики для решения научно-технических, диагностических и терапевтических задач в медицине и биологии.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Современные методы преобразования энергии

Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28355 (3010695)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

Данная дисциплина посвящена проблеме получения и преобразования энергии. Рассматриваются первичные энергоресурсы, механическая, электрическая, электромагнитная, химическая, ядерной энергии, гравитационные силы, мощность и энергия потока. Дается представление о способах передачи тепловой энергии и КПД теплового поршневого двигателя. Рассматривается комплексное использование тепловой и электрической энергии, проблемы преобразования электромагнитной энергии, электрохимические накопители энергии и ядерная энергоустановка.

Цель изучения дисциплины

Формирование знаний основ проблемы получения, преобразования, передачи и аккумулирования энергии.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Постреквизиты

Итоговая аттестация

Физика реологических жидкостей

Цикл дисциплины	Профилирующие дисциплины
Компонент дисциплины	Компонент по выбору
SubjectID	28357 (3010696)
Курс	1
Семестр	2
Количество академических кредитов	5
Лекции	15часов
Практические и семинарские занятия	30часов
Самостоятельная работа обучающегося под руководством преподавателя	35часов
Самостоятельная работа обучающегося	70часов
Итого	150часов
Форма контроля знаний	Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются неньютоновские жидкости с реологическими характеристиками, не зависящими и

зависящими от времени. Рассматриваются вязкоупругие жидкости и зависимости между перепадом давления и пропускной способностью при ламинарном режиме течения жидкости в круглых трубах. Дается представление о теплообмене при ламинарном и турбулентном течении в трубе. Рассматривается прессование расплавленных полимеров и перемешивание неньютоновских жидкостей.

Цель изучения дисциплины

Изучение теоретических основ гидродинамики и теплообмена неньютоновских жидкостей.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физические методы визуализации

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору SubjectID 28366 (3010718) Курс 2 Семестр Количество академических кредитов Лекции 15часов 30часов Практические и семинарские занятия Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются рентгеновские лучи и получение изображений. Приводятся принципы работы компьютерной рентгеновской томографии и цифровой ангиографии. Приводятся особенности использования ультразвука для визуализации и получения изображений с помощью радиоизотопов. рассматриваются МР- и ЭПР-томографии. Освещаются вопросы использования инфракрасного излучения для получения изображений и визуализации по распределению электрического импеданса. Дается анализ различных методов визуализации.

Цель изучения дисциплины

Изучение принципов визуализации, их обработки и применения для медицинской диагностики, терапии и исследований.

Результаты обучения

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Модуль 4. Современные направления технической физики

Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок. Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике. Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований. Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании. Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии. Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Перспективы и теплофизические проблемы теплохладотехники

 Цикл дисциплины
 Профилирующие дисциплины

 Компонент дисциплины
 Компонент по выбору

 SubjectID
 28381 (3010702)

 Курс
 2

 Семестр
 1

 Количество академических кредитов
 5

Лекции 30часов Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 35часов преподавателя

Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе представлены теоретические основы получения низких и сверхнизких температур. Приводится аналитическое описание процессов переноса теплоты. Рассматривается приближенные методы решения уравнений теплопроводности и диффузии для условий термической обработки продуктов. Приводятся основные понятия и методы расчета процессов охлаждения, замораживания и размораживания продуктов. Рассматриваются сублимационная сушка, холодильное хранение и термическая обработка продуктов.

Цель изучения дисциплины

Целью данного курса является формирование комплекса знаний в области низкотемпературной технологии и высокотемпературных производств

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Атомные электростанции

Цикл дисциплины Профилирующие дисциплины Компонент по выбору Компонент дисциплины 28386 (3010706) SubjectID Курс Семестр 1 Количество академических кредитов Лекции 15часов Практические и семинарские занятия 30часов Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов Итого 150часов

Краткое описание содержания дисциплины

В данном курсе рассматриваются энергетические ресурсы и производство электрической энергии. Раскрываются критерии выбора параметров пара на АЭС с регенеративным подогревом питательной воды и водным теплоносителем. Приводится описание парогенераторной установки АЭС с ВВЭР и реакторной установки с водным теплоносителем. Рассматриваются вопросы технического водоснабжения и компоновки оборудования АЭС. Рассматриваются вентиляционные и дезактивационные установки и тепловые схемы. АЭС.

Экзамен

Цель изучения дисциплины

Получение теоретических и практических навыков, связанных с выбором параметров и типа оборудования при проектировании и работе АЭС и АСТ в энергосистеме в стационарных, переходных и аварийных режимах.

Результаты обучения

Форма контроля знаний

ОМ5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

5

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Количество академических кредитов

Безопасность эксплуатации ядерных энергетических установок

Цикл дисциплины Профилирующие дисциплины

Компонент дисциплины Компонент по выбору SubjectID 28380 (3010701)

Курс 2 Семестр 1

Лекции 30часов Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 35часов

преподавателя

Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются факторы потенциальной безопасности ядерных энергетических установок (ЯЭУ) и возможные способы проявления опасностей. Приводятся типы аварий ЯЭУ. Рассматривается система государственных и международных требований к осуществлению технической эксплуатации. Приводятся требования, предъявляемые к техническому состоянию ЯЭУ и требования, предъявляемые к системам управления безопасностью. Рассматриваются пути совершенствования системы управления безопасностью.

Цель изучения дисциплины

Освоение комплекса взаимосвязанных вопросов обеспечения безопасности на всех этапах эксплуатации ядерных энергетических установок.

Результаты обучения

ОМ5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Водородная энергетика

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору 28391 (3010713) SubjectID Курс Семестр 1 Количество академических кредитов 5 Лекции 15часов Практические и семинарские занятия 30часов Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов 150часов Итого

Краткое описание содержания дисциплины

В данном курсе рассматриваются свойства, способы получения, хранения и транспортировки водорода. Раскрываются вопросы атомно- водородной энергетики и управляемого термоядерного синтеза. Описываются новые направления в производстве водорода. Приводятся основные научно-исследовательские направления в области водородной энергетики и энерготехнологий. Дается сравнительный анализ современных методов производства водорода и показаны перспективные направления водородной энергетики в мире.

Экзамен

Цель изучения дисциплины

Формирование у обучающихся принципов получения и хранения водорода в области водородной энергетики.

Результаты обучения

Форма контроля знаний

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

15часов

Пререквизиты

Бакалавриат

Лекции

Постреквизиты

Итоговая аттестация

Криогенная техника

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору SubjectID 28387 (3010707) Курс 2 Семестр 1 Количество академических кредитов

30часов

Практические и семинарские занятия

Самостоятельная работа обучающегося под руководством 35часов

преподавателя

 Самостоятельная работа обучающегося
 70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматривается область применения, физические исследования и свойства криоагентов. Приведены идеальный цикл и каскадное ожижение, криогенные системы с применением дроссель эффекта и расширения в детандерах. Рассмотрены рефрижераторные и ожижительные системы, особенности цикла Капицы и Клода. Рассмотрен процесс ожижения водорода и гелия и разделение воздуха. Представлены микрокриогенные системы и медицинская криоаппаратура.

Цель изучения дисциплины

Изучение вопросов охлаждения среды до и ниже уровня 120 К и изучение процессов и явлений, протекающих в машинах и аппаратах криогенной техники.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и полученния энергии.

ОЛУ Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Медицинская дозиметрия

Цикл дисциплины Профилирующие дисциплины

 Компонент дисциплины
 Компонент по выбору

 SubjectID
 28388 (3010708)

Kypc 2

Семестр 1
Количество академических кредитов 5

 Лекции
 15часов

 Практические и семинарские занятия
 30часов

 Самостоятельная работа обучающегося под руководством
 35часов

преподавателя

 Самостоятельная работа обучающегося
 70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматривается поле ионизирующего излучения и доза излучения. Даются физические основы дозиметрии фотонного излучения. Изучаются конструктивная особенность и принцип действия ионизационных и полупроводниковых дозиметрических детекторов, а также другие методы дозиметрии. Рассматриваются вопросы дозиметрии заряженных и незаряженных частиц и дозиметрии инкорпорированных радионуклидов. Приводятся основные способы защиты от ионизирующих излучений в медицине.

Цель изучения дисциплины

Овладение современными профессиональными знаниями в области прикладной ядерной физики, лежащими в основе решения задач дозиметрии ионизирующих излучений для решения задач профессиональной деятельности.

Результаты обучения

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Медицинское материаловедение

Цикл дисциплины Профилирующие дисциплины

Компонент дисциплины Компонент по выбору

SubjectID 28395 (3010715)

 Курс
 2

 Семестр
 1

 Количество академических кредитов
 5

 Лекции
 15часов

 Практические и семинарские занятия
 30часов

Самостоятельная работа обучающегося под руководством 35часов

преподавателя

 Самостоятельная работа обучающегося
 70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе рассмотрены основные вопросы материаловедения, применительно к медицине. Приведен анализ основных свойств проводниковых, полупроводниковых и диэлектрических материалов и особенности применения их в медицине. Приведены требования, предъявляемые к материалам, предназначенным для биомедицинского применения и эндопротезирования. Рассмотрена совместимость различных материалов с биологическими средами при протезировании и стабильность функциональных свойств при стерилизационной обработке.

Цель изучения дисциплины

Формирование фундаментальных принципов в вопросах медицинского материаловедения.

Результаты обучения

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации II

Цикл дисциплины Профилирующие дисциплины

 Компонент дисциплины
 Вузовский компонент

 SubjectID
 28390 (3010711)

 Курс
 2

 Семестр
 1

 Количество академических кредитов
 4

 Научно-исследовательская работа
 120часов

 Итого
 120часов

Форма контроля знаний Итоговая оценка по практике

Краткое описание содержания дисциплины

Научно- исследовательская работа развивает способности самостоятельного осуществления деятельности в сфере образования и науки, связанной с решением сложных профессиональных задач в инновационных условиях, обеспечение развития профессионального научно- исследовательского мышления магистрантов, формирование у них четкого представления об основных профессиональных задачах, способах их решения, проведение библиографической работы с привлечением современных информационных технологий.

Научно- исследовательская работа развивает способности самостоятельного осуществления деятельности в сфере образования и науки, связанной с решением сложных профессиональных задач в инновационных условиях, обеспечение развития профессионального научно- исследовательского мышления магистрантов, формирование у них четкого представления об основных профессиональных задачах, способах их решения, проведение библиографической работы с привлечением современных информационных технологий.

Цель изучения дисциплины

Подготовка магистранта к самостоятельной научно- исследовательской работе, направленной на написание и защиту магистерской диссертации.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Пререквизиты

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации I Постреквизиты

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации III

Применение ускорителей в медицине и промышленности

Цикл дисциплины Профилирующие дисциплины

 Компонент дисциплины
 Компонент по выбору

 SubjectID
 28382 (3010703)

 Курс
 2

 Семестр
 1

 Количество академических кредитов
 5

Лекции 30часов

Практические и семинарские занятия 15часов Самостоятельная работа обучающегося под руководством 35часов

преподавателя

Самостоятельная работа обучающегося 70часов Итого 150часов Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные понятия в области физики и техники ускорителей. Приводится классификация и типы ускорителей. Даются общие сведения об ускорении заряженных частиц. Рассматриваются принцип действия и конструктивные особенности ускорителей прямого действия, линейного индукционного ускорителя и циклических ускорителей. Рассматриваются накопители и метод встречных пучков. Рассматриваются основные вопросы эксплуатации и обслуживания ускорителей.

Цель изучения дисциплины

Формирование знаний, которыми должен владеть специалист, занимающийся эксплуатацией ускорителей и использованием их в решении научных или прикладных задач.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Принципы лучевой диагностики и терапии

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору SubjectID 28397 (3010722) Курс Семестр 1 Количество академических кредитов 5 Лекнии 15часов Практические и семинарские занятия 15часов Лабораторные работы 15часов Самостоятельная работа обучающегося под руководством 35часов преподавателя 70часов Самостоятельная работа обучающегося 150часов Итого

Краткое описание содержания дисциплины

В изучаемом курсе рассматриваются общие и частные вопросы лучевой диагностики и радиологии. Рассматриваются физикотехнические и биологическое основы лучевой терапии и работы отделения лучевой терапии. Приводятся существующие источники ионизирующего излучения, клиническая дозиметрия и средства обеспечения радиационной защиты. Приводятся показания и противопоказания к проведению лучевой терапии, методы и планирование лучевой терапии, а также лучевые реакции и повреждения.

Экзамен

Цель изучения дисциплины

Формирование знаний, умений и навыков по современным вопросам лучевой диагностики и терапии, изучение основных методик лучевой диагностики и терапии.

Результаты обучения

Форма контроля знаний

ОН4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ОN7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теория расчета холодильных систем

Цикл дисциплины Профилирующие дисциплины

Компонент дисциплины Компонент по выбору 28392 (3010714) SubjectID

2 Курс 1

Семестр

Количество академических кредитов 5
Лекции 15часов
Практические и семинарские занятия 30часов
Самостоятельная работа обучающегося под руководством преподавателя
Самостоятельная работа обучающегося 70часов
Итого 150часов

Краткое описание содержания дисциплины

В данном курсе рассматриваются общие положения по проектированию конструкторскому расчету холодильных систем. Разбираются методики расчета компрессорных агрегатов одноступенчатого, двухступенчатого и каскадного сжатия, а также компаундных схем. Приведены графоаналитические методы расчета теплообменных аппаратов высокого и низкого давления и анализ эффективности и перспективы развития конструкций. Рассматривается анализ работы холодильных систем методами математического моделирования.

Экзамен

Цель изучения дисциплины

Формирование у обучающихся расчетных навыков конструирования и анализа эффективности работы холодильных систем.

Результаты обучения

Форма контроля знаний

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теплоиспользующие и газовые холодильные машины

Цикл дисциплины Профилирующие дисциплины Компонент дисциплины Компонент по выбору SubjectID 28385 (3010705) Курс Количество академических кредитов Лекции 15часов Практические и семинарские занятия 30часов Самостоятельная работа обучающегося под руководством 35часов преподавателя Самостоятельная работа обучающегося 70часов 150часов Итого Экзамен Форма контроля знаний

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются Теоретические и действительные циклы газовых холодильных машин. Приводится конструкция газовых холодильных машин с детандерами и газовые холодильные машины с вихревыми трубами. Приводятся основные положения теории термоэлектрических холодильных машин. Рассматривается принцип действия, теоретический и действительный процессы работы пароэжекторной машины. Приводится принцип действия абсорбционной холодильной машины и анализ действительных процессов.

Цель изучения дисциплины

Целью данного курса является изучение основ рабочих процессов и теории теплоиспользующих и газовых холодильных машин, конструкции их элементов и машины в целом, а также усвоение современных методов и расчета и конструирования, обеспечивающих экономичное производство и эффективную эксплуатацию.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОЛУ Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физика плазмы и термоядерные реакторы

Цикл дисциплиныПрофилирующие дисциплиныКомпонент дисциплиныКомпонент по выборуSubjectID28383 (3010704)Курс2Семестр1Количество академических кредитов5

Лекции 15часов

 Практические и семинарские занятия
 30часов

 Самостоятельная работа обучающегося под руководством
 35часов

преподавателя

 Самостоятельная работа обучающегося
 70часов

 Итого
 150часов

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматривается современное состояние и перспективы развития термоядерной энергии. Дается основное понятие плазмы и удержание плазмы. Рассматриваются радиационные потери из плазмы и параметры плазмы в ТЯР. Приводится конструкция и экономический анализ строительства Д-Т реактора. Рассматриваются токамаки, пробкотроны, линейный и тороидальный тета- пинчи, лазерный термоядерный синтез и перспективные конструкции установок термоядерного синтеза.

Цель изучения дисциплины

Теоретическая и практическая подготовка магистрантов к работе, связанной с расчетами, проектированием и эксплуатацией объектов, работающих на основе термоядерного синтеза.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Исследовательская практика

Цикл дисциплины Профилирующие дисциплины

Компонент дисциплины Вузовский компонент

SubjectID 28280 (3010709)

 Курс
 2

 Семестр
 2

 Количество академических кредитов
 13

 Производственная практика
 390часов

 Итого
 390часов

Форма контроля знаний Итоговая оценка по практике

Краткое описание содержания дисциплины

Исследовательская практика магистранта проводится с целью ознакомления с новейшими теоретическими, методологическими и технологическими достижениями отечественной и зарубежной науки, современными методами научных исследований, обработки и интерпретации экспериментальных данных и применения их в дальнейшей деятельности.

Цель изучения дисциплины

Формирование у обучающихся навыков проведения исследовательской работы в рамках магистерской диссертации.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Пререквизиты

Базовые и профилирующие дисциплины ОП

Постреквизиты

Итоговая аттестация

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации III

Цикл дисциплины Профилирующие дисциплины

 Компонент дисциплины
 Вузовский компонент

 SubjectID
 28281 (3010712)

 Курс
 2

 Семестр
 2

 Количество академических кредитов
 9

 Научно-исследовательская работа
 270часов

 Итого
 270часов

Форма контроля знаний Итоговая оценка по практике

Краткое описание содержания дисциплины

Научно- исследовательская работа развивает способности самостоятельного осуществления деятельности в сфере

образования и науки, связанной с решением сложных профессиональных задач в инновационных условиях, обеспечение развития профессионального научно- исследовательского мышления магистрантов, формирование у них четкого представления об основных профессиональных задачах, способах их решения, проведение библиографической работы с привлечением современных информационных технологий.

Цель изучения дисциплины

Подготовка магистранта к самостоятельной научно- исследовательской работе, направленной на написание и защиту магистерской диссертации.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Пререквизиты

Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации II Постреквизиты

Итоговая аттестация

Итоговая аттестация

Магистерская диссертация

Количество академических кредитов

4.Сводная таблица по объему образовательной программы «7M05302 - Техническая физика»

Наименование дисциплины	Цикл/ Комп.	Семестр	Кредитов	Всего часов	Лек.	Пр./ Сем.	Лаб.	СРОП	СРО	Форма контроля знаний
Модуль 1. Социолингвистическая и научно-педагогическая деятельность										
Иностранный язык (профессиональный)	БД/ВК	1	3	90		30		20	40	Экзамен
История и философия науки	БД/ВК	1	5	150	15	30		35	70	Экзамен
Педагогика высшей школы	БД/ВК	1	3	90	15	15		20	40	Экзамен
Психология управления	БД/ВК	1	3	90	15	15		20	40	Экзамен
Педагогическая практика	БД/ВК	3	6	180						Итоговая оценка по практике
Модуль 2. Организация научных исследований в технической физике										
Методология научных исследований	БД/КВ	1	5	150	15	30		35	70	Экзамен
Методы измерения ионизирующих излучений и свойств ядерных материалов	БД/КВ	1	5	150	15	30		35	70	Экзамен
Методы обработки сигналов и изображений в медицине	БД/КВ	1	5	150	15	15	15	35	70	Экзамен
Организация и планирование научных исследований	БД/КВ	1	5	150	15	30		35	70	Экзамен
Основные принципы конструирования приборов и оборудования	БД/КВ	1	5	150	15	30		35	70	Экзамен
Основы САПР низкопотенциальной энергетики	БД/КВ	1	5	150	15	30		35	70	Экзамен
Теория и техника научного эксперимента	БД/КВ	1	5	150	15	15	15	35	70	Экзамен
Теория и техника теплотехнического эксперимента	БД/КВ	1	5	150	15	15	15	35	70	Экзамен
Физико-математическое моделирование ядерных энергетических установок	БД/КВ	1	5	150	15	30		35	70	Экзамен
Модуль 3. О	Рундамен т	альные пон	нятия совре	менной ф	изики					
Избранные главы современной физики	ПД/ВК	2	5	150	30	15		35	70	Экзамен
Магнитно-резонансные методы	ПД/КВ	2	5	150	30	15		35	70	Экзамен
Механика сплошных сред	ПД/КВ	2	5	150	15	30		35	70	Экзамен
Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации I	ПД/ВК	2	11	330						Итоговая оценка по практике
Основные принципы современной физики (на английском языке)	ПД/КВ	2	5	150	30	15		35	70	Экзамен
Основы когенерации	ПД/КВ	2	5	150	15	30		35	70	Экзамен
Основы нанотехнологии	ПД/КВ	2	5	150	30	15		35	70	Экзамен
Основы ядерной физики в приложении к медицине	ПД/КВ	2	5	150	15	30		35	70	Экзамен
Современные методы преобразования энергии	ПД/КВ	2	5	150	15	30		35	70	Экзамен

Физика реологических жидкостей	ПД/КВ	2	5	150	15	30		35	70	Экзамен
Физические методы визуализации	ПД/КВ	2	5	150	15	30		35	70	Экзамен
Модуль 4. Современные направления технической физики										
Перспективы и теплофизические проблемы теплохладотехники	ПД/КВ	3	5	150	30	15		35	70	Экзамен
Атомные электростанции	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Безопасность эксплуатации ядерных энергетических установок	ПД/КВ	3	5	150	30	15		35	70	Экзамен
Водородная энергетика	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Криогенная техника	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Медицинская дозиметрия	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Медицинское материаловедение	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации II	пд/вк	3	4	120						Итоговая оценка по практике
Применение ускорителей в медицине и промышленности	ПД/КВ	3	5	150	30	15		35	70	Экзамен
Принципы лучевой диагностики и терапии	ПД/КВ	3	5	150	15	15	15	35	70	Экзамен
Теория расчета холодильных систем	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Теплоиспользующие и газовые холодильные машины	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Физика плазмы и термоядерные реакторы	ПД/КВ	3	5	150	15	30		35	70	Экзамен
Исследовательская практика	пд/вк	4	13	390						Итоговая оценка по практике
Научно-исследовательская работа магистранта, включая прохождение стажировки и выполнение магистерской диссертации III	ПД/ВК	4	9	270						Итоговая оценка по практике
Итоговая аттестация										
Магистерская диссертация		4	8	240						

Рецензия

на образовательную программу «7М05302 - Техническая физика», группы образовательных программ «М090 - Физика», направления подготовки «7М053 - Физические и химические науки», области образования «7М05 - Естественные науки, математика и статистика».

Код в международной стандартной классификации образования 0530 Уровень подготовки: магистратура Для набора 2023 года

Представленная образовательная программа включает в себя четыре модуля:

- Социолингвистическая и научно-педагогическая деятельность;
- Организация научных исследований в технической физике;
- Фундаментальные понятия современной физики;
- Современные направления технической физики.

Для каждого модуля представлены результаты обучения, которые формируются из результатов обучения дисциплин, предлагаемых к изучению.

Поставленная цель программы - подготовка конкурентоспособных специалистов, обладающих глубокими фундаментальными знаниями в области технической физики, умеющих работать в современных условиях быстро меняющихся технологий и резко возрастающего объема информации достигается в результате соответствующих дисциплин, педогогической и исследовательской практик.

Обучающиеся по программе «Техническая физика» могут выбрать свою образовательную траекторию.

В образовательной программе приведены все необходимые разделы: квалификационные характеристики выпускника образовательной программы, в которых определяется присуждаемая степень, перечень должностей, уровень квалификации по отраслевой рамке квалификаций, область профессиональной деятельности, объекты и виды профессиональной деятельности.

Основным критерием завершенности образовательного процесса по подготовке магистров научно-педагогического направления является освоение обучающимся не менее 84 кредитов теоретического обучения. Срок обучения два года.

В целом следует отметить, что образовательная программа «7М05302 - Техническая физика» включает в себя все необходимые разделы, соответ-

ствует современным требованиям, предъявляемым к уровню подготовки магистров.

Начальник отдела термоядерных исследований Филиал ИАЭ РГП НЯЦ РК

Б.Ж. Чектыбаев

16.01.2023

Подпись вектобомве в. Х. заверяю.

Ст. инспектор ОКР