Каталог элективных дисциплин

7М05 - Естественные науки, математика и статистика

(Код и классификация области образования)

7М053 - Физические и химические науки

(Код и классификация направления подготовки)

0530

(Код в международной стандартной классификации образования)

М090 - Физика

(Код и классификация группы образовательной программы)

7М05302 - Техническая физика

(Код и наименование образовательной программы)

Магистр

(уровень подготовки)

Набор 2024 года

Разработано

Академическим комитетом ОП Руководитель АК Касымов Аскар Багдатович Менеджер ОП Ермоленко Михаил Вячеславович

Рассмотрено

на заседании Комиссии по академическому качеству Инженерно-технологического факультета Протокол № 3 «15» 01. 2024г.

на заседании Комиссии по академическому качеству Исследовательской школы физических и химических наук

Рекомендовано к утверждению на Академическом совете университета Протокол № 1 «06» июня 2024 г.

Утверждено

на заседании Академического совета университета протокол № 3 от «16» января 2024 г.

на заседании Академического совета университета протокол № 6 от «18» июня 2024 г.

Методология научных исследований

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В курсе подробно рассказано о методологическом обеспечении научно- исследовательской деятельности. Показана роль функциональной структуры научно- исследовательской деятельности. Проанализировано эмпирическое и теоретическое мышление в научном познании. Сформулированы и обоснованы подтверждения и опровержения теоретических схем. Обобщены функциональные особенности экспериментального моделирования. Дано объяснение роста научного знания. Показана важность функционально-процессуальных характеристик гипотез и их научной новизны.

Цель изучения дисциплины

Сформировать у обучающихся принципы и методы организации научных исследований.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

Результаты обучения по дисциплине

- применять общенаучные методы исследования;
- анализировать результаты исследований;
- формулировать результаты научных исследований.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Методы измерения ионизирующих излучений и свойств ядерных материалов

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс изучает категории ядерных материалов (ЯМ) и требования, предъявляемые к точности и кратности проведения измерений. Рассматриваются баланс ЯМ и уравнение баланса. Приведены учетные и подтверждающие измерения ЯМ, неразрушающие методы анализа ЯМ и калибровка измерительной системы. Обсуждается определение в образцах содержания ЯМ посредством измерения их собственных гамма-излучений и гамма-спектрометрических измерений. Даются основы теории переноса излучений и многократного рассеяния.

Цель изучения дисциплины

Ознакомление с методами измерения ядерных материалов и полей ионизирующих излучений, получение навыков в проведении этих измерений и обработки полученных результатов.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать категории и принцип классификации ядерных материалов, физические основы калориметрического, гаммаспектроскопического, масс-спектроскопического и других анализов ядерных материалов;
- понимать основные процессы взаимодействия заряженных частиц, нейтронов и фотонов с веществом, характеристики поля ионизирующего излучения и единицы их измерения;
- применять методы уменьшения дисперсии оценок функционалов при статистическом моделировании траекторий частиц;
- составлять алгоритмы и программы расчета характеристик поля излучения в средах различного состава -
- применять пакеты прикладных программ для расчета полей ионизирующих излучений;
- использовать метод Монте-Карло в задачах радиационной физики.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Методы обработки сигналов и изображений в медицине

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен цифровым изображениям, применяемых в медицине. В нем рассматривается качество изображений и базовые операции с изображениями. Приводится классификация и отличительная особенность медицинских изображений. Дается анализ медицинских изображений и верификация алгоритмов анализа. Рассматриваются особенности визуализации

для диагностики и терапии. Приводится математическое моделирование как метод анализа биологических процессов. Рассматривается аппроксимация типичных биологических сигналов и анализ биологических шумов.

Цель изучения дисциплины

Формирование теоретических представлений и практических навыков моделирования биологических объектов и анализа биологических сигналов и биологических шумов.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать свойства биообъекта;
- выбирать методы манипуляции с изображениями;
- формулировать медико-технические требования к медицинским измерительным приборам;
- оценивать качество медицинских изображений;
- аппроксимировать биологические сигналы;
- проводить анализ биологических шумов.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Организация и планирование научных исследований

Цикл дисциплины Базовые дисциплины

Kypc 1

Количество академических кредитов 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Курс посвящен вопросам организации и планирования научных исследований. Изложены методологические основы научного познания и творчества. Освещены выбор направления научного исследования и разработка этапов научно-исследовательской работы. Рассмотрены требования к поиску, накоплению и обработке научной информации. Описаны принципы теоретических и экспериментальных исследований. Разобрано моделирования в научном и техническом творчестве. Обобщены методы обработки результатов экспериментальных исследований. Сформулированы требования по оформлению результатов научной работы.

Цель изучения дисциплины

Освоение элементов методики научных исследований, для развития рационального творческого мышления и организации оптимальной мыслительной деятельности.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

Результаты обучения по дисциплине

- описывать методологию и методику научных исследований;
- защищать сформулированные цель, задачи и выводы научного исследования;
- сопоставлять результаты экспериментов с теоретическими предпосылками;
- использовать различные методы обработки результатов измерений и оценки погрешностей.

Пререквизиты

. Бакалавриат

Постреквизиты

Итоговая аттестация

Основные принципы конструирования приборов и оборудования

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются теоретические основы конструирования и проектирования с разработкой технического задания. Приводится структура и конструктивные особенности различных приборов, а также принципы разработки технического задания. Уделяется внимание формулировке цели и задач. Рассматривается конструкторская документация и ее классификация. Приводятся основные группы технической документации и спецификации. Рассматривается технология конструирования, эксплуатационные свойства и надежность приборов и оборудования.

Цель изучения дисциплины

Сформировать у обучающихся компетентностный подход в области конструирования приборов и оборудования в области технической физике.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в

низкопотенциальной энергетике.

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- формулировать техническое задание;
- разрабатывать требования к изделию;
- структурировать эксплуатационные свойства;
- оценивать надежность приборов и оборудования.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основы САПР низкопотенциальной энергетики

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются цели и задачи математического моделирования объектов низкопотенциальной энергетики. Приводятся часто используемые способы оптимизации моделируемых объектов, виды идеальных моделей и метод термоэкономики. Рассматривается основные методы моделирования и динамической оптимизации холодильных установок и систем кондиционирования воздуха с учетом сезонных изменений температуры наружного воздуха и величины нагрузок. Уделяется внимание системам автоматизированного проектирования.

Цель изучения дисциплины

Целью данного курса является развитие навыка научно-исследовательской и проектно-конструкторской работы в области холодильной техники с постановкой и проведением имитационных экспериментов с моделями процессов тепломассообмена, происходящих в теплообменных аппаратах холодильной установки на базе ЭВМ.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОЛ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- демонстрировать основы математического моделирования и оптимизации моделируемых объектов;
- составлять материальные и тепловые балансы процессов;
- строить математические модели теплообменных аппаратов холодильных установок;
- сопоставлять оптимальные температурные режимы работы холодильных установок.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теория и техника научного эксперимента

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В курсе подробно рассматриваются методы планирования эксперимента. Изучаются возможности применения в исследованиях однофакторного, дробного факторного и полного факторного экспериментов и рототабельных планов. Показаны задачи оптимизации в экстремальных экспериментах. Рассмотрены спецвопросы измерений, теория погрешностей, математическая статистика, теория вероятности и средства измерений. Обобщены методы и средства теплотехнических измерений, термический анализ, методы экспериментального изучения процессов тепло и массопереноса.

Цель изучения дисциплины

Формирование знаний, умений и навыков в области современных методов и средств проведения научных и промышленных экспериментов.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

Результаты обучения по дисциплине

- объяснять роль технических измерений и экспериментальных исследований в развитии науки и техники;
- составлять измерительные схемы в соответствии с задачами исследований;
- выбирать средства измерений, исходя из анализа требований к точности результатов экспериментов;
- проводить поиск оптимальных условий проведения экспериментов;
- принимать количество и условие проведения экспериментов, необходимых для достижения поставленной цели.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Теория и техника теплотехнического эксперимента

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В курсе рассмотрены элементы теории планирования эксперимента, регрессивный и статический анализы. Дан обзор технических измерений и приборов. Обобщены способы экспериментального изучения теплофизических свойств веществ и процессов тепло- и массообмена, методы и средства контроля технических материалов и металлов теплоэнергетических теплотехнологических установок. Представлены методы контроля качества сырья, топлива и продукции теплотехнологических производств и метрологическое обеспечение производства и экспериментальных исследований.

Цель изучения дисциплины

Освоение основ метрологии и измерительной техники, формирование знаний, умений и навыков в области современных методов и средств проведения научных и промышленных экспериментов в области теплоэнергетики и теплотехники.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

Результаты обучения по дисциплине

- применять методы и средства теплотехнических исследований в рамках образовательной программы;
- составлять план экспериментальных исследований;
- составлять измерительные схемы в соответствии с задачами исследований.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физико-математическое моделирование ядерных энергетических установок

Цикл дисциплины Базовые дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные направления применения электронно- вычислительных машин в физических исследованиях. Подробно изучаются особенности постановки расчетного эксперимента. Приводятся численное интегрирование функций одной переменной и кратные интегралы. Описываются конечно- разностные методы решения дифуравнений, применительно к ядерным реакторам. Приводится методика моделирования движения частицы в силовом поле. Дается характеристика нейтронно- физических задач и алгоритм моделирования физических процессов в ядерных реакторах.

Цель изучения дисциплины

Подготовка магистрантов к решению инженерных задач анализа и расчета ядерных энергетических установок на основе строгих научных методов.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать принципы использования метода конечных разностей при решении уравнений конвективного теплообмена;

5

- выбирать методы интерполяции и аппроксимации, используемые при обработке экспериментальных данных;
- пользоваться математическими пакетами прикладных программ;
- использовать методы решения задач теплообмена с помощью средств вычислительной техники.

Пререквизиты

. . Бакалавриат

Постреквизиты

Итоговая аттестация

Магнитно-резонансные методы

Курс

Количество академических кредитов

Краткое описание содержания дисциплины

В данном курсе рассматривается история создания MPT и принципы магнитного резонанса. Приводятся виды магнитных резонансов и области их применения. Дается представление о спин- решеточной и спин- спиновой релаксации. Рассматривается понятие самодиффузии и способ ее измерения методом градиентного ЯМР. Рассматриваются способы получения изображения в магнитно-резонансном исследовании. Дается квантовомеханическое описание явления магнитного резонанса и природа анизотропии спектров.

Цель изучения дисциплины

Формирование у магистрантов знаний в области различных методов магнитного резонанса и типичными областями их применения.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

Результаты обучения по дисциплине

- описывать устройство спектрометра ЯМР и работу его отдельных блоков;
- пользоваться полученными знаниями для выполнения физического эксперимента по исследованию структуры и динамики молекулярных систем при помощи метода импульсного ЯМР;
- работать на спектрометре ЯМР;
- проводить физический эксперимент при помощи спектрометра ЯМР.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Механика сплошных сред

 Цикл дисциплины
 Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматривается механика с ее основными законами и уравнениями и кинематика с необходимыми динамическими уравнениями движения сплошных сред. Рассматриваются уравнения движения идеальной жидкости, плоскопараллельное и волновое движение и уравнения двумерного слоевого движения идеальной жидкости на криволинейной поверхности. Дается представление о движении вязкой жидкости. Приводятся уравнения и некоторые задачи теории упругости.

Цель изучения дисциплины

Ознакомить магистрантов с основными физическими явлениями, изучаемыми механикой сплошных сред, и, до известной степени, с элементами используемого ею математического аппарата.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- понимать основные принципы механики, динамических законов, законов сохранения, решенных классических задач механики:
- описывать основные исторические этапы развития механики.;
- использовать общие законы механики для получения частных закономерностей.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основные принципы современной физики (на английском языке)

 Цикл дисциплины
 Профилирующие дисциплины

 Курс
 1

Количество академических кредитов 5
Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные свойства пространства-времени и их связь с законами сохранения. Приводится принцип относительности и его следствия. Дается понятие и определение фазового пространства состояний физической системы. Подробно освещается обратимая и необратимая динамика. Приводятся понятия хаоса и структуры. Дается эволюционное и структурное описание физической системы. Рассматривается роль принципов симметрии.

Цель изучения дисциплины

Формирование у студентов современного физического мышления о физической картине мира.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования

ядерных установок.

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

Результаты обучения по дисциплине

- описывать основные свойства пространства-времени и их связь с законами сохранения;
- понимать эволюционное и структурное описание физической системы;
- применять принципы симметрии в решении физических задач.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Основы когенерации

Цикл дисциплины Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются когенерационные установки и перспективы их использования. Рассматриваются энергоблоки на базе газопоршневых двигателей (ГПУ), газотурбинные, парогазовые, твердотопливные и биогазовые когенерационные установки. Рассматриваются вопросы когенерации и малой энергетики на предприятиях пищевой промышленности и сельском хозяйстве. Дается представление о тригенерации и экологических проблемах при производстве тепловой и электрической энергии.

Цель изучения дисциплины

Формирование знаний основ проектирования, монтажа и эксплуатации когенерационных установок

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОЛ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать теоретические основы когенерации;
- выбирать подходящую когенерационную установк;
- применять методы расчета и эксплуатации когенерационных установок.

Пререквизиты

Бакалавриат

Постреквизиты

. Итоговая аттестация

Основы нанотехнологии

Цикл дисциплины Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен тенденции развития нантехнологий. Рассматривается молекулярно-лучевая эпитаксия и химическое осаждение из газообразной фазы. Приводятся современные методы, использующие сканирующие зонды и сканирующая туннельная микроскопия. Изучается атомная силовая микроскопия и атомная инженерия. Обсуждаются зондовые методы формирования наноструктур и методы формирования нанообразных изображений. Подробно разбираются особенности саморегулирующихся процессов и формирования наноструктурированных материалов и покрытий.

Цель изучения дисциплины

Ознакомление с основными физическими явлениями, изучаемыми нанотехнологиями и с элементами используемого ими математического аппарата.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

Результаты обучения по дисциплине

- толковать основные тенденции развития нанотехнологии;
- описывать основные методы, использующие сканирующие зонды;
- пользоваться общими законами нанотехнологий для получения частных закономерностей; решать прикладные задачи;
- применять общие законы нанотехнологий при решении прикладных задач.

Пререквизиты

. . Бакалавриат

Постреквизиты

. Итоговая аттестация

Основы ядерной физики в приложении к медицине

Цикл дисциплины Профилирующие дисциплины

Kypc 1

Количество академических кредитов 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данный курс посвящен вопросам использования ядерной физики в диагностике органов человека и применению регистрирующей аппаратуры. Рассматривается история развития ядерной медицины, свойства атомных ядер и радиоактивные превращения ядер. Дается понятие радиоактивности, дозиметрии. Рассматривается применение радиоактивных излучений для диагностики и лучевой терапии. Приводится степень воздействия ионизирующего излучения. Разбирается магнитно-резонансная, компьютерная томография и производство радиофармпрепаратов.

Цель изучения дисциплины

Обеспечение необходимого уровня знаний основ ядерной физики, который необходим для использования явлений ядерной физики для решения научно-технических, диагностических и терапевтических задач в медицине и биологии.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

Результаты обучения по дисциплине

- определять свойства биообъекта;
- использовать методы получения изображения;
- формулировать медико-технические требования к аппаратам;
- оценивать качество изображений;
- анализировать визуализации биообъектов на сканах;

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Современные методы преобразования энергии

Цикл дисциплины Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

Данная дисциплина посвящена проблеме получения и преобразования энергии. Рассматриваются первичные энергоресурсы, механическая, электрическая, электромагнитная, химическая, ядерной энергии, гравитационные силы, мощность и энергия потока. Дается представление о способах передачи тепловой энергии и КПД теплового поршневого двигателя. Рассматривается комплексное использование тепловой и электрической энергии, проблемы преобразования электромагнитной энергии, электрохимические накопители энергии и ядерная энергоустановка.

Цель изучения дисциплины

Формирование знаний основ проблемы получения, преобразования, передачи и аккумулирования энергии.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- объяснять физические основы современных методов получения электрической и тепловой энергии;
- раскрывать преимущества и недостатки различных способов получения тепловой и электрической энергии;
- демонстрирует знания методов расчета энергетического оборудования.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физика реологических жидкостей

Цикл дисциплины Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются неньютоновские жидкости с реологическими характеристиками, не зависящими и зависящими от времени. Рассматриваются вязкоупругие жидкости и зависимости между перепадом давления и пропускной способностью при ламинарном режиме течения жидкости в круглых трубах. Дается представление о теплообмене при ламинарном и турбулентном течении в трубе. Рассматривается прессование расплавленных полимеров и перемешивание неньютоновских жидкостей.

Цель изучения дисциплины

Изучение теоретических основ гидродинамики и теплообмена неньютоновских жидкостей.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать классификацию неньютоновских жидкостей;
- представлять критерии, характеризующие возникновение турбулентности в системах неньютоновских жидкостей;
- толковать характеристики теплообмена неньютоновских жидкостей;
- рассчитывать течение неньютоновских жидкостей в трубах и каналах; строить про- фили скоростей в ламинарном и турбулентном потоках;
- определять характеристики неньютоновских жидкостей;
- применять способы решения прикладных задач в области физики реологических жидкостей.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физические методы визуализации

 Цикл дисциплины
 Профилирующие дисциплины

 Курс
 1

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются рентгеновские лучи и получение изображений. Приводятся принципы работы компьютерной рентгеновской томографии и цифровой ангиографии. Приводятся особенности использования ультразвука для визуализации и получения изображений с помощью радиоизотопов. рассматриваются MP- и ЭПР-томографии. Освещаются вопросы использования инфракрасного излучения для получения изображений и визуализации по распределению электрического импеданса. Дается анализ различных методов визуализации.

Цель изучения дисциплины

Изучение принципов визуализации, их обработки и применения для медицинской диагностики, терапии и исследований.

Результаты обучения

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать физические процессы, которые лежат в основе систем визуализации; выбирать методы визуализации и обработки изображений в медицине;
- объяснять особенности и ограничения этих методов;
- объяснять принципы построения аппаратуры и программного обеспечения для обработки изображений;
- пользоваться стандартными программами обработки изображений;
- интерпретировать результаты, которые получены разными методами, с точки зрения физических принципов лежащих в основе визуализации;
- работать с аппаратурой прикладного назначения.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Перспективы и теплофизические проблемы теплохладотехники

 Цикл дисциплины
 Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе представлены теоретические основы получения низких и сверхнизких температур. Приводится аналитическое описание процессов переноса теплоты. Рассматривается приближенные методы решения уравнений теплопроводности и диффузии для условий термической обработки продуктов. Приводятся основные понятия и методы расчета процессов охлаждения, замораживания и размораживания продуктов. Рассматриваются сублимационная сушка, холодильное хранение и термическая обработка продуктов.

Цель изучения дисциплины

Целью данного курса является формирование комплекса знаний в области низкотемпературной технологии и высокотемпературных производств

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОЛУ Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать теоретические основы получения низких и сверхнизких температур, основные проблемы удержания низкотемпературного потенциала;
- применять современные подходы получения высокотемпературных рабочих сред;
- выполнять тепловые расчеты и анализ эффективности теплохладотехнологий;
- осуществлять оптимизацию температурно- временных режимов процессов воздействия на различные материальные системы.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Атомные электростанции

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются энергетические ресурсы и производство электрической энергии. Раскрываются критерии выбора параметров пара на АЭС с регенеративным подогревом питательной воды и водным теплоносителем. Приводится описание парогенераторной установки АЭС с ВВЭР и реакторной установки с водным теплоносителем. Рассматриваются вопросы технического водоснабжения и компоновки оборудования АЭС. Рассматриваются вентиляционные и дезактивационные установки и тепловые схемы АЭС.

Цель изучения дисциплины

Получение теоретических и практических навыков, связанных с выбором параметров и типа оборудования при проектировании и работе АЭС и АСТ в энергосистеме в стационарных, переходных и аварийных режимах.

Результаты обучения

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Результаты обучения по дисциплине

- представлять ядерные процессы и кинетику ядерного реактора;
- описывать получение электрической и тепловой энергии в энергоустановках на ядерном топливе;
- проводить расчет тепловых схем электрических станций и их основных элементов.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Безопасность эксплуатации ядерных энергетических установок

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются факторы потенциальной безопасности ядерных энергетических установок (ЯЭУ) и возможные способы проявления опасностей. Приводятся типы аварий ЯЭУ. Рассматривается система государственных и международных требований к осуществлению технической эксплуатации. Приводятся требования, предъявляемые к техническому состоянию ЯЭУ и требования, предъявляемые к системам управления безопасностью. Рассматриваются пути совершенствования системы управления безопасностью.

Цель изучения дисциплины

Освоение комплекса взаимосвязанных вопросов обеспечения безопасности на всех этапах эксплуатации ядерных энергетических установок.

Результаты обучения

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать теоретические и практические основы безопасной эксплуатации ядерных энергетических установок;
- организовывать планирование деятельности по техническому обеспечению безопасности на основе государственных и международных требований;
- составлять документы, требуемые системой управления безопасностью;
- использовать определение приоритетов в выполнении работ по ТО и ремонту ядерных энергетических установок.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Водородная энергетика

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются свойства, способы получения, хранения и транспортировки водорода. Раскрываются вопросы атомно- водородной энергетики и управляемого термоядерного синтеза. Описываются новые направления в производстве водорода. Приводятся основные научно-исследовательские направления в области водородной энергетики и энерготехнологий. Дается сравнительный анализ современных методов производства водорода и показаны перспективные направления водородной энергетики в мире.

Цель изучения дисциплины

Формирование у обучающихся принципов получения и хранения водорода в области водородной энергетики.

Результаты обучения

ON5 Разрабатывать меры по безопасной эксплуатации и исследовательской деятельности на современных АЭС, инженерных сетях и оборудовании.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Результаты обучения по дисциплине

- описать способы получения, хранения водорода;
- применить основные направления научно-поисковых работ в области водородной энергетики;
- сравнить различные методы производства водорода;
- показать перспективы развития водородной энергетики.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Криогенная техника

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматривается область применения, физические исследования и свойства криоагентов. Приведены идеальный цикл и каскадное ожижение, криогенные системы с применением дроссель эффекта и расширения в детандерах. Рассмотрены рефрижераторные и ожижительные системы, особенности цикла Капицы и Клода. Рассмотрен процесс ожижения водорода и гелия и разделение воздуха. Представлены микрокриогенные системы и медицинская криоаппаратура.

Цель изучения дисциплины

Изучение вопросов охлаждения среды до и ниже уровня 120 K и изучение процессов и явлений, протекающих в машинах и аппаратах криогенной техники.

Результаты обучения

ON6 Оперировать фундаментальными понятиями современной физики в области нанотехнологии, неньютоновских жидкостей и получения энергии.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать механизм процесса и явлений, протекающих в машинах и аппаратах криогенной техники;
- описывать устройство и работу основных наиболее распространенных конструкций аппаратов и машин, применяемых при разделении газовых смесей методом низкотемпературных ректификаций;
- пользоваться основными методиками расчета машин и аппаратов криогенной техники;
- использовать методики расчета основных наиболее распространенных процессов и конструкций машин и аппаратов криогенной техники.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Медицинская дозиметрия

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматривается поле ионизирующего излучения и доза излучения. Даются физические основы дозиметрии фотонного излучения. Изучаются конструктивная особенность и принцип действия ионизационных и полупроводниковых дозиметрических детекторов, а также другие методы дозиметрии. Рассматриваются вопросы дозиметрии заряженных и незаряженных частиц и дозиметрии инкорпорированных радионуклидов. Приводятся основные способы защиты от ионизирующих излучений в медицине.

Цель изучения дисциплины

Овладение современными профессиональными знаниями в области прикладной ядерной физики, лежащими в основе решения задач дозиметрии ионизирующих излучений для решения задач профессиональной деятельности.

Результаты обучения

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать физические закономерности, лежащие в основе различных методов дозим7етрии;
- определять дозиметрические величины от различных видов излучений;
- рассчитывать характеристики поля излучения и дозиметрические величины с помощью специальных компьютерных программ.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Медицинское материаловедение

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

 Форма контроля знаний
 Экзамен

Форма контроля знаний Краткое описание содержания дисциплины

В данном курсе рассмотрены основные вопросы материаловедения, применительно к медицине. Приведен анализ основных свойств проводниковых, полупроводниковых и диэлектрических материалов и особенности применения их в медицине. Приведены требования, предъявляемые к материалам, предназначенным для биомедицинского применения и

эндопротезирования. Рассмотрена совместимость различных материалов с биологическими средами при протезировании и стабильность функциональных свойств при стерилизационной обработке.

Цель изучения дисциплины

Формирование фундаментальных принципов в вопросах медицинского материаловедения.

Результаты обучения

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать основные вопросы материаловедения;
- понимать фундаментальные принципы взаимодействия живого организма с различными материалами медицинского назначения;
- анализа свойств биосовместимых материалов и медицинских изделий;
- применять результаты и методы планирования для решения практических проблем в различных областях биомедицинских исследований.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Применение ускорителей в медицине и промышленности

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются основные понятия в области физики и техники ускорителей. Приводится классификация и типы ускорителей. Даются общие сведения об ускорении заряженных частиц. Рассматриваются принцип действия и конструктивные особенности ускорителей прямого действия, линейного индукционного ускорителя и циклических ускорителей. Рассматриваются накопители и метод встречных пучков. Рассматриваются основные вопросы эксплуатации и обслуживания ускорителей.

Цель изучения дисциплины

Формирование знаний, которыми должен владеть специалист, занимающийся эксплуатацией ускорителей и использованием их в решении научных или прикладных задач.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать основы теории ускорения частиц в циклических и линейных ускорителях;
- описывать основные принципы построения и конструирования, особенности эксплуатации всех существующих типов ускорителей;
- пользоваться пакетами прикладных программ для моделирования процессов в ускорителях;
- использовать ускорители в научных исследованиях и для прикладных целей.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Принципы лучевой диагностики и терапии

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В изучаемом курсе рассматриваются общие и частные вопросы лучевой диагностики и радиологии. Рассматриваются физикотехнические и биологическое основы лучевой терапии и работы отделения лучевой терапии. Приводятся существующие источники ионизирующего излучения, клиническая дозиметрия и средства обеспечения радиационной защиты. Приводятся показания и противопоказания к проведению лучевой терапии, методы и планирование лучевой терапии, а также лучевые реакции и повреждения.

Цель изучения дисциплины

Формирование знаний, умений и навыков по современным вопросам лучевой диагностики и терапии, изучение основных методик лучевой диагностики и терапии.

Результаты обучения

ON4 Формировать стратегию и структуру организации научных исследований в вопросах измерения ионизирующего излучения и математических методов анализа для медико-биологических исследований.

ON7 Оперировать фундаментальными понятиями современной физики в области методов визуализации и ядерно-физических методов диагностики и терапии.

ON10 Оперировать информацией в области современных ионизирующих медицинских систем и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать принципы получения изображения при лучевых методах диагностики;
- описывать физические основы методов лучевой диагностики;
- объяснять основные принципы лучевой терапии опухолей, показания и противопоказанияк ее проведению;
- выбирать современные методы лучевого лечения злокачественных новообразований и неопухолевых заболеваний;
- пояснять деонтологические аспекты в радиологии;
- определять методы получения качественного диагностического изображения;
- анализировать качество полученных изображений с использованием различных методов лучевой диагностики;
- опознать изображение органов человека и указать их основные анатомические структуры на результатах лучевых обследований;
- использовать различные методы лучевой диагностики.

Пререквизиты

Бакалавриат

Постреквизиты

. Итоговая аттестация

Теория расчета холодильных систем

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматриваются общие положения по проектированию конструкторскому расчету холодильных систем. Разбираются методики расчета компрессорных агрегатов одноступенчатого, двухступенчатого и каскадного сжатия, а также компаундных схем. Приведены графоаналитические методы расчета теплообменных аппаратов высокого и низкого давления и анализ эффективности и перспективы развития конструкций. Рассматривается анализ работы холодильных систем методами математического моделирования.

Цель изучения дисциплины

Формирование у обучающихся расчетных навыков конструирования и анализа эффективности работы холодильных систем.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- регулировать параметры работы холодильной установки;
- проектировать теплоизоляционные конструкции с учетом недопущения конденсации водяного пара на поверхности и внутри ограждений, аппаратов и трубопроводов;
- -применять методы расчета и анализа компрессионных агрегатов холодильных систем;
- владеть методами термодинамического и технико-экономического анализа для оценки эффективности холодильных систем и установок;
- анализировать работу холодильных систем.

Пререквизиты

Бакалавриат

Постреквизиты

Теплоиспользующие и газовые холодильные машины

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данной дисциплине рассматриваются Теоретические и действительные циклы газовых холодильных машин. Приводится конструкция газовых холодильных машин с детандерами и газовые холодильные машины с вихревыми трубами. Приводятся основные положения теории термоэлектрических холодильных машин. Рассматривается принцип действия, теоретический и действительный процессы работы пароэжекторной машины. Приводится принцип действия абсорбционной холодильной машины и анализ действительных процессов.

Цель изучения дисциплины

Целью данного курса является изучение основ рабочих процессов и теории теплоиспользующих и газовых холодильных машин, конструкции их элементов и машины в целом, а также усвоение современных методов и расчета и конструирования, обеспечивающих экономичное производство и эффективную эксплуатацию.

Результаты обучения

ON3 Формировать стратегию и структуру организации научных исследований и автоматизированного проектирования в низкопотенциальной энергетике.

ОМ9 Оперировать информацией в области современных низкотемпературных систем и исследовательской деятельности.

Результаты обучения по дисциплине

- описывать общие основы теории термодинамических процессов сжатия и расширения газов;
- выполнять расчет и объяснять принципы конструирования элементов, узлов и деталей холодильных машин, а также принципы их агрегатирования и компоновки;
- составлять техническое задание на проектирование, производить тепловой и конструктивный расчеты холодильных машин и их элементов;
- производить технико- экономический анализ с целью выбора оптимального варианта компрессора, детандера для конкретных условий их работы;
- использовать тепловые диаграммы рабочих веществ, а также таблицы термодинамических и физических свойств для них.

Пререквизиты

Бакалавриат

Постреквизиты

Итоговая аттестация

Физика плазмы и термоядерные реакторы

Цикл дисциплины Профилирующие дисциплины

 Курс
 2

 Количество академических кредитов
 5

Форма контроля знаний Экзамен

Краткое описание содержания дисциплины

В данном курсе рассматривается современное состояние и перспективы развития термоядерной энергии. Дается основное понятие плазмы и удержание плазмы. Рассматриваются радиационные потери из плазмы и параметры плазмы в ТЯР. Приводится конструкция и экономический анализ строительства Д-Т реактора. Рассматриваются токамаки, пробкотроны, линейный и тороидальный тета- пинчи, лазерный термоядерный синтез и перспективные конструкции установок термоядерного синтеза.

Цель изучения дисциплины

Теоретическая и практическая подготовка магистрантов к работе, связанной с расчетами, проектированием и эксплуатацией объектов, работающих на основе термоядерного синтеза.

Результаты обучения

ON2 Формировать стратегию и структуру организации научных исследований и физико- математического моделирования ядерных установок.

ON8 Оперировать информацией в области современных ядерных энергетических установок, термоядерной энергетики в вопросах безопасной их эксплуатации и исследовательской деятельности.

Результаты обучения по дисциплине

- толковать общие сведения о плазме, равновесной степени ионизации, кулоновских столкновениях;
- решать задачи по физике плазмы, используя основные законы и уравнения;
- проводить выбор принципиальных схем и технических особенностей наиболее важных систем установок.

Пререквизиты

. . . Бакалавриат

Постреквизиты

Итоговая аттестация